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Abstract

This paper discusses the basics of repeated measures designs. Within-

subjects designs are compared to between-subjects designs, discussing the

advantages and disadvantages of each. Further discussion compares a univariate

one-way ANOVA with the between-subjects ANOVA and multivariate repeated

measures ANOVA. Limitations of the univariate repeated measures ANOVA and

their corrections are explained. This paper also demonstrates that the univariate

repeated measures ANOVA is a form of linear regression. The advantages of

linear regression over ANOVAs are discussed briefly. Discussion concludes with

examples of how to compute univariate, multivariate, and linear regression

ANOVAs using SPSS.
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Understanding "Within" versus "Between" ANOVA Designs:

Benefits and Requirements of Repeated Measures

A repeated measure design is an experimental design that measures each

participant on the dependent variable multiple times (Girden, 1992; Minke, 1997).

Each time the participant is measured, he or she experiences different levels of the

independent variable or factor (Heiman, 1999). This is known as a within-subjects

factor (Stevens, 1996; Wells, 1998).

Repeated Measures Design

Types of Repeated Measures Designs

There are three ways of acquiring these multiple measures (Huck, 2000).

Participants could perform one task during testing periods that are separated by a

specified amount of time, such as when students take the same test at the

beginning and end of a course. Participants could be measured several times

during one testing period, performing a different treatment or activity each time

(Huck, 2000). For example, in thought suppression studies participants are

typically asked to not think about a specified thought and then to think about the

thought and are measured on the number of times they think about the thought

(Wegner, Schneider, Carter, & White, 1987). Participants could be measured on

multiple characteristics during one testing period, such as the participant's views

on various types of abuse (Huck, 2000).
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Repeated measures designs are known by many names. A repeated

measures design may also be called a within-subjects design (Girden, 1992). If the

design contains both between and within-subject factors, it could be called a

mixed-model design, a randomized blocks design, or a split-plot design

(Barcikowski & Robey, 1984; Huynh & Feldt, 1970). This paper will only discuss

fully within-subject designs.

Advantages of Repeated Measures Designs

Within-subject designs require fewer participants than between-subjects

designs (Huck, 2000; Keselman & Algina, 1996; Minke, 1997; Tanguma, 1999).

This is advantageous when random assignment is not possible, obtaining

participants is expensive, or participants are hard to find (Keselman & Algina;

Tanguma; Wells, 1998).

These designs require fewer participants since participants serve as their

own control (Greenwald, 1976; Winer, 1962). The error variance attributed to

individual variation is removed, resulting in more statistical power (Tanguma,

1999). Keppel and Saufley (1980) argue, "the primary source of error variance is

the subjects" (p. 176). Taking out the variance due to individual differences

increases the likelihood that differences between levels are due to the treatment

itself and not the participants (Keppel & Zedeck, 1989; Keselman & Algina,

1996; Stevens, 1996). The statistical power of repeated measures designs will be

discussed in greater detail later in this paper.
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Disadvantages of Repeated Measures Designs

Although repeated measures designs have several advantages over

between-subjects designs, they have several limitations. This design can be more

time consuming than a study using separate groups for each level (Kogos, 2000).

The additional time requirement could affect attrition rates (Girden, 1992).

Because there are typically fewer participants in a repeated measures design, the

results may not be as generalizable to other populations (Huck, 2000).

Another potential problem with repeated measures designs is the effect

one treatment could have on subsequent treatments, a phenomenon known as a

carry-over or practice effect (Huck, 2000; Keppel & Zedeck, 1989). Carry-over

effects could cause biased estimates of the effect of the treatment (Keppel &

Zedeck, 1989). Practice effects can be negative (deflating scores) or positive

(inflating scores; Lewis, 1993, as cited in Wells, 1998).

There are several ways to minimize carry-over effects. In the case of

boredom, monetary incentives may increase motivation, and rest periods may

reduce fatigue (Keppel & Zedeck, 1989; Tanguma, 1999). To control for positive

practice effects, Keppel and Saufley (1980) suggest having intervals between

treatments long enough to allow the previous treatment's effect to dissipate or to

bring the participant back to an agreed upon performance level before

implementing the next treatment.
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Counterbalancing

One of the most popular ways to control for carry-over and practice effects

is counterbalancing. In counterbalancing, each of the treatments is given the same

number of times at each level, and each treatment precedes the other treatments an

equal number of times (Girden, 1992; Huck, 2000; Keppel & Zedeck, 1989).

Girden (1992) outlines two methods of counterbalancing, assuming a

balanced design. For an even number of levels, the order for the levels of the first

participant is 1, 2, n, 3, n-1, 4, n-2, etc., where the numbers refer to a level. The

order for the second participant is found by adding 1 to each level in the first

participant's order (because there is not a fifth level, 5 becomes 1). Table 1 gives

an example of counterbalancing with four levels and four participants.

Table 1

Counterbalancing with an Even Number of Levels

Level

Participant 1 2 3 4

A 1 2 4 3

B 2 3 1 4

C 3 4 2 1

D 4 1 3 2
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For an odd number of treatment levels, the order for the first participant

follows the same pattern as for an even number of levels. The order for the second

participant is found by reversing the order of the first participant. The order for

the third and subsequent participants follows the same pattern as subsequent

participants with an even number of levels.

Though counterbalancing is a useful tool, it does not completely prevent

one treatment from affecting another (Kieffer, 1998, as cited in Wells, 1998).

Latency effects can also be a problem. Girden (1992) defined latency effect as"an

effect of treatment that is not evident until a second treatment is introduced" (p.

3). Allowing adequate time between treatments may prevent latency effects

(Girden, 1992; Kogos, 2000; Tanguma, 1999).

Data Analysis

Univariate Repeated Measures and Between-subjects ANOVAs

Data from a repeated measures design can be analyzed through the use of

a special univariate analysis of variance (ANOVA; Tanguma, 1999). This

ANOVA is known as a repeated measures ANOVA or a within-subjects ANOVA

(Huck, 2000). The purpose of a repeated measures ANOVA is the same as a

between-subjects ANOVA. Both are used to see "whether the sample data cast

doubt upon the null hypothesis" (Huck, 2000, p. 471). Understanding a repeated

measures ANOVA can be accomplished by comparing it to a between-subjects

one-way ANOVA.
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Table 2

Example Data Set

Treatment

Participant A B C D Indy Y

1 1 2 3 4 2.5

2 2 2 4 8 4

3 3 5 6 7 5.25

4 5 5 6 8 6

ki 2.75 3.5 4.75 6.75 I7G = 4.44

Sums of Squares

In a between-subjects ANOVA there are "three sources of variability...

treatment effects, individual differences, and experimental error" (Tanguma,

1999, p. 243). Because a repeated measures ANOVA removes the variance due to

individual differences, there are only two "sources of variability." The reduction

of the error term decreases the chance of a Type II error (Stevens, 1996).

Greenwald (1976) argued that it is possible to have the same statistical power

using a within-subjects design with 1/J subjects fewer than a between-subjects

design (J represents the number of treatments).

9



Understanding Within 9

Table 2 provides data to compare the between-subjects ANOVA to the

within-subjects ANOVA. Table 2 provides the data for the within-subjects

ANOVA in which all four participants receive each of four treatment conditions,

although they do so in a counterbalanced order.

Partitioning sums of squares begins the same way as in a between-subjects

ANOVA. The total sums of squares, SOS.,, is computed with Equation 1:

sosto, .E0T-y02, (1)

where Y equals an individual score and YG equals the grand mean. SOS.

measures the variability of the individual scores around the grand mean (Haase &

Thompson, 1992)

The between-groups sum of squares, SOSB, or treatment sum of squares

for a repeated measure, SOStreat, indicates the proportion of the total variance that

is due to the treatment (Bartz, 1999). It is found using Equation 2:

SOSB = n> (ik Yc )2 = SOS,, (2)

where n equals the number of participants in each group or treatment and Yk

equals a group or treatment mean. If the null hypothesis is true, the group means
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should be equal to the grand mean. SOSB and SOS treat are measures of the

deviation of the groups form the grand mean (Haase & Thompson, 1992). The

larger the SOSB or SOS., the more likely the results will be statistically

significant (Hinkle, Wiersma, & Jurs, 1998).

The error or residual sum of squares, SOS,,, represents the uncontrollable

variability of the study (Keppel & Zedeck, 1989). This score is a measure of how

much the individual scores deviate from their respective means, or the variability

within the group or treatment. It is obtained by using Equation 3:

SOSres = E(Yik)2. (3)

In the repeated measures ANOVA, the sum of squares due to individual

differences, or subject sum of squares, SOS, is also calculated (Equation 4):

SOS, = kE (YS )2 (4)

where Ys equals a participant's mean score across treatment conditions. SOSs

measures the variability of a participant's score around his or her mean across

treatments. The SOS, is subtracted from the SOSres, resulting in a larger Fcalc.
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Table 3

One-way Between-subjects ANOVA Summary

Source SS df MS F Eta Sq

SOSB 36.69 3 12.23 4.16* 51%

SOSres 35.25 12 2.94

SOStof 71.94 15

*p < .05.

Computing Fcalc

Table 3 is a summary of the one-way between-subjects ANOVA. The

between-groups degrees of freedom (4f) is k 1, residual df is n k, and the total

dfis N 1 (N= total participants). The df are additive in that df to1= dfB + dfres

The mean square, MS, for each row is obtained by dividing the sums of

squares by their corresponding df, resulting in the MS between, MSB, and MS

residual, MS,-. The MS total is not needed. Fcalc equals MSB/ MSres. The effect

size, eta squared, ri 2, for the treatment is found by taking SOSB /SOS1o1 *100. Eta

squared allows the reader to know the percentage of the variance explained by the

sums of squares from which it was calculated (Cohen, 2001).

12
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Table 4 is a summary for the one-way repeated measures ANOVA. The df

for subjects is n 1, df for treatment is k 1, df residual is (n 1)(k 1), and df

total is nT 1 (nT equals the total number of scores).

Table 4

One-way Repeated Measures ANOVA Summary

Source SS df MS F Eta Sq

SOSs

SOStreal

SOSres

SOS,,

28.19

36.69

7.06

71.94

3

3

9

15

9.40

12.23

.78

15.68**

39%

51%

** < 01P

The between-subjects design had four times as many participants;

however, the Fcalc for the repeated measures ANOVA was almost four times as

large. Despite the reduced degrees of freedom (3, 9), the repeated measures

ANOVA had a smaller statistical probability (p = .001) than the between-subjects

ANOVA (3, 12,p = .031).
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Assumptions of Univariate Repeated Measures ANOVA

Independence of Observations

In order for the results of a repeated measures ANOVA to be accurate,

three assumptions must be met (Cohen, 2001; Huynh & Feldt, 1970; Stevens,

1996). The violation of these assumptions can lead to an increased Type I error

rate (Hinkle, Wiersma, & Jurs, 1998). The first assumption, independence of

observations, is typically assumed through random selection (Keppel & Zedeck,

1989). There are some instances, however, where dependent observations are

made, such as in cooperative learning (Stevens, 1996). In this example,

interaction of the group is intended to affect the scores of its members. Correlated

observations typically cause an overestimation of the true probability and can be

resolved through using a more conservative probability level (Stevens, 1996).

Multivariate Normality

The repeated measures ANOVA is robust to violations of the second

assumption, multivariate normality. "The ANOVA F test are robust to

nonnormality in the sense that the actual probability of a Type I error would be

close to the nominal level" (Wilcox, 1997, p. 7). This assumption would have to

be "severely violated" (Cohen, 2001, p. 451) with a small sample size to have a

marked effect on the test statistic. In this rare situation, Cohen suggests using a

nonparametric test or a data transformation.
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Sphericity Assumption

Assessing sphericity. The third assumption, sphericity, is the requirement

"that variances of differences for all treatment combinations be homogenous (i.e.

2 2
= Cry2y3 etc -*/" Girden, 1992, p. 6). In other words, the variances should

meet "a set of acceptable patterns" (Huck, 2000, p. 477) or "people should

respond similarly across treatments" (Kogos, 2000, p. 8).

If the variance of the differences of treatment levels is not equal, the Fcalc

would tend to overestimate the statistical significance level (Box, 1954; Huck,

2000; Stevens, 1996). This could potentially lead to an increased Type I error rate

(Stevens, 1996).

Girden (1992) argued that it is rare for homogeneity to exist among

variance differences when studies have more than two levels. When there are only

two levels of the repeated measure, sphericity is not an issue (Edwards, 1985). In

this case, there is not another variance of difference to compare against, thus

"homogeneity must exist" (Girden, p. 18).

The variance of differences between pairs of scores, ay2, can be found

two ways. First:

cs2
Y I

+ cr2 CO V,
Yi 2

15
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where a; equals the variance of one set of scores, o equals the variance of the

paired set of scores, and COVequals the covariance (Girden, 1992). Covariance

is computed by [E (X 1)(Y ic)]/n , where X equals the group or level

number and X equals the average of the group numbers.

The second way of computing the difference between pairs of scores is to

subtract the individual scores of one treatment from another to obtain a difference

scores, then compute the variance of the difference scores (Girden, 1992).

Variance can be computed by [E (D D)2 ] 1 n 1, where D equals an individual

difference score and D equals the mean of the difference scores.

Conservative F. When the sphericity assumption is violated, there are

several corrections that can be made. The most popular corrections involve

decreasing the degrees of freedom, and thus the Fcalc (Huck, 2000). The Geisser

and Greenhouse conservative F-test is the simplest correction. For this

adjustment, the degrees of freedom would be 1 for the numerator and n 1 for the

denominator (Girden, 1992; Huck, 2000). This is assuming that sphericity has

been violated to highest extent; therefore, this is a very conservative test. Stevens

(1996) explained "this makes the test very conservative, since adjustment is made

for the worst possible case, and we don't recommend it" (p. 460). This procedure

often overcorrects for violations of sphericity (Huck, 2000).

16
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Another method of correcting the degrees of freedom is multiplying the

degrees of freedom by the correction factor epsilon, c (Girden, 1992; Huck, 2000;

Huynh & Feldt, 1976; Stevens, 1996). O'Brien and Kaiser (1985) explain "c is a

measure of nonsphericity" (p. 319), a smaller epsilon means a further departure

from sphericity. The range of epsilon is from 1.0 to 1/J-1 (Box, 1954; Greenhouse

& Geisser, 1959). If the variances of difference are not exactly the same, epsilon

will be less than 1.0 (Huynh & Feldt).

Epsilon hat adjustment. The Geisser-Greenhouse adjustment, or epsilon

hat, s , is an estimation of epsilon which ranges from 1.0 to 1 /J -1 (Girden,

1992). Once computed, epsilon hat is then multiplied by both degrees of freedom

to more closely estimate Fcrit (Huynh & Feldt, 1976).

Table 5

Variance-covariance Matrix

Treatment

Treatment 1 2 3 4

1 2.92 2.5 2.25 2.25

2 2.5 3 2.5 1.5

3 2.25 2.5 2.25 1.92

4 2.25 1.5 1.92 3.58

17
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A variance-covariance matrix must be constructed to compute epsilon hat.

Using the data from Table 2, calculate the variances for each treatment condition.

Starting in the upper right hand corner with treatment 1, place the variances along

the diagonal axis. Next compute the covariance for each possible pair of

treatments. Place each covariance in the cells where both treatments intersect.

Table 5 provides the completed variance-covariance matrix.

Epsilon hat is computed using Equation 6:

J2(75
£_

(J 1)(ECov1 2J 1" (WV,' + J2C79-4)
(6)

where D equals the mean of variances along the diagonal, COTT equals the mean

of all entries in the matrix, Cov, equals .a squared entry in the matrix, and CoVi

equals the mean of the entries of a row in the matrix. In this instance, "a = 0.47.

Our calculated epsilon hat is then multiplied by each degree of freedom

resulting in the new F(1.4, 4.2) = 15.58,p = .013. It is also interesting to note that

the eta squared effect size is unaffected by this correction, although a small

epsilon value may suggest the necessity of using a different effect size estimate.

Epsilon tilde. Another correction for a violation of the sphericity

assumption is to use the Huynh-Feldt epsilon tilde, W. Equation 7 gives the

formula for epsilon tilde:

18
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[N(J -1)i] 2
= (J 1)[N k (J 1)i]' (7)

where k equals the number of groups, or 1 for a single-factor study (Girden,

1992). Using the sample data from Table 2, epsilon tilde equals 0.76.

The epsilon tilde is multiplied by each degree of freedom producing a new

Fcrit but not a new Fcalc. However, the lower degrees of freedom associated with

epsilon tilde increased the Fcrit, and therefore makes obtaining statistical

significance more difficult.

Epsilon hat or tilde. Each correction reduces the Type I error rate,

compared to an unadjusted Fcrit, but they also have their drawbacks. The

conservative F test is good for making a quick evaluation of the power of the test

statistic, but it is often too conservative (Huck, 2000). Epsilon hat is the best

estimator of epsilon when epsilon is less than .75, but it tends to underestimate

epsilon if "epsilon is near or a little above .75" (Huynh & Feldt, 1976, p. 71).

Epsilon tilde is the best predictor of epsilon when epsilon is near or above .75, but

as epsilon falls below .75, epsilon tilde tends to overestimate epsilon. As Huynh

and Feldt (1976) argued, "the difference between epsilon tilde and epsilon hat

decreases with increasing N" (p. 75). "It would be desirable to have an unbiased

estimator fore . Such an estimator, unfortunately, is not known" (Huynh & Feldt,

19
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1976, p. 73). Girden (1992) and Stevens (1996) recommend averaging epsilon

tilde and epsilon hat to obtain a more accurate epsilon.

Univariate and Multivariate Repeated Measures ANOVAs

Another way to deal with potential violations of the sphericity assumption

is to use a multivariate repeated measures ANOVA. Sphericity is not necessary

with this ANOVA because the test statistic uses transformed variables instead of

the raw scores (Girden, 1992; Stevens, 1996; Wells, 1998). This procedure treats

the different treatments for the individuals as separate dependent variables and the

treatment scores can be come correlated with each other (Kogos, 2000; Minke,

1997).

In cases where the sphericity assumption is violated, the multivariate

ANOVA may have more statistical power against Type II errors (Girden, 1992;

Stevens, 1996). In using transformed scores, "the researcher has lost the

advantage of repeatedly measuring participants because now each measurement is

a separate dependent variable" (Kogos, 2000, p. 10). The multivariate approach

may be more statistically powerful with larger sample sizes (Stevens, 1996). A

good rule of thumb is to have at least ten participants more than the number of

levels when using the multivariate repeated measures approach (Stevens, 1996).

If the sphericity assumption is not violated, the univariate ANOVA is

more powerful because it has a higher degree of freedom than Hotellings

(Girden, 1992; Stevens, 1996). For example, the multivariate repeated measures

20
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ANOVA has a F(3, 1), = 6.33, p= .282. To have statistically significant results,

with the sample data, F would need to equal 261. In deciding between using the

univariate or multivariate approach, one must consider the sample size and the

possibility or predicted extent of violation of the sphericity assumption.

Linear Regression Repeated Measures ANOVA

Basics of Linear Regression

A univariate repeated measures ANOVA can be run using linear

regression. In linear regression what is known about one variable is used to make

predictions about the other variable (Keppel & Zedeck,1989) and "a less frequent

but equally plausible use is to test hypotheses" (p. 58). The linear regression

equation is Y =Bo + BA', where Bo and Blare the constants (Y intercept and slope,

respectively), and Y is the predicted Y value for a given X value.

The slope is found using Equation 8:

B =
ER,/ -10(Y V)]

' E (X -A7)" (8)

where X equals the mean of all the X scores. Using the data from Table 2, the X

score would be the number corresponding to the treatment. The result is four 1 s,
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four 2s, and so forth. Once the slope is calculated, the regression equation can be

used to find the Y intercept. The Y intercept is calculated Bo = B1(X) .

Next, the regression formula can be used to calculate the predicted Y

values. Once the constants, B0, B1, and the predicted Y values are found, the sums

of squares can be partitioned. The total sums of squares is found using Equation 1.

The regression sum of squares is found using Equation 9:

sos,=E(2 --y0)2 . (9)

This sum of squares is used in the same way as the treatment sum of

squares in the ANOVA. This is similar to the previous formula for the treatment

sum of squares, except Y predicted is used instead of the group mean and the

equation is not multiplied by the sample size. Because a Y predicted for each

person will enter the equation, there is no need to multiply by n.

The residual sum of squares is obtained by subtracting each observed Y

from its respective predicted value, then squaring and summing the difference

scores, as seen in Equation 10:

SOSres f)2 . (10)
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This is the same formula used earlier, except Y predicted is used instead

of the group mean. The further Y observed deviates from the Y predicted on the

regression line, the larger the error term will be (Neter, Kutner, Nachtsheim, &

Wasserman, 1996).

Least Squares Method

If the data in the regression equation were a perfectly linear relationship,

the predicted Y for each score would equal its treatment mean. This revelation is

intuitive because the best predictor for Y without knowing about Xis the mean of

Y (Keppel & Zedeck, 1989). In this situation the treatment sums of squares is at

its maximum and the residual sum of squares is at its minimum (Edwards, 1985).

This regression line is termed the method of least squares (Edwards). Using this

method, the sums of squares in the repeated measures ANOVA can be translated

into the ones used previously.

Advantages of Linear Regression

An ANOVA is a simplified form of linear regression (Edwards, 1985).

Linear regression has a major advantage over an ANOVA. An ANOVA uses a

nominal or ordinal scale for the independent variable whereas linear regression

uses data at any scale for the independent variables (Cohen, 2001). For example,

if a researcher were studying how well a test score predicts future performance

using an ANOVA, he or she would have to turn interval data (test scores) into a

nominal scale by chunking groups of scores together, 100-95 points, 94-90 points,
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and so forth. In doing so, valuable information would be lost (Pedhazur, 1982, as

cited in Haase & Thompson, 1992). Haase and Thompson (1992) argue that

changing interval variables to nominal dichotomies or trichotomies, distorts the

shape, variability, and relationships between variables.

Disadvantages of Linear Regression

The disadvantage of linear regression is that its statistical power decreases

the further the treatment means move from a straight line (Cohen, 2001). This

causes the between sum of squares to be greater than the regression sums of

squares and subsequently, a larger residual sum of squares (Cohen).

To maintain the ability to use continuous independent variables while

studying nonlinear relationships, Cohen (2001) suggests multiple regression.

Multiple regression can tell the researcher about the shape of the relationship in

addition to doing everything an ANOVA can do (Haase & Thompson, 1992).

Data Analysis with SPSS

For large data sets, performing computations by hand is very tedious and

time consuming. Thankfully, there are commercial statistical packages that can

assist in these situations. When using statistical programs, it is important to

remember they were written by humans, and thus, may have mistakes. A

statistical package does not replace a statistically sophisticated mind. For the

purpose of this paper, analysis of data will be discussed using SPSS version 11.0.
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Linear Regression Repeated Measures ANOVA

To use SPSS for linear regression, the dependent variables must first be

made into J 1 orthogonal contrasts (Minke, 1997). To understand the process by

which the contrasts are developed, the reader is referred to Edwards (1985), Neter

et al. (1996), or Keppel and Zedeck (1989). Appendix A is a modification of the

coding table presented by Edwards (1985, p. 124).

In Appendix A, V1 is the coding for the linear model explained above. V2

and V3 are the quadratic and cubic model vectors respectively. These vectors

allow the researcher to study nonlinear relationships. The vector in the summary

table with the largest sum of squares is the best fit for the data, or best explains

the shape of the relationship (Keppel & Zedeck, 1989). The last vector contains

the sum for each participant. This represents the variability of the subjects

(Keppel & Zedeck, 1989).

The dependent variable and vectors can be typed directly onto the data

editor, which is a spreadsheet similar in appearance to Lotus or Excel. For those

who prefer the use of a mouse, SPSS is very accommodating. To do this analysis,

go to the pull down menu and click Analyze, then go down to Regression and

click Linear. In the linear regression dialog box, highlight the dependent variable

y and click on the arrow beside the Dependent box. Then highlight the vectors and

click the arrow beside the Independent(s) box and then click OK. An ANOVA

summary table is then created in the output viewer (See Appendix B). This same
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analysis can be done using the syntax editor. Once one understands how to use

syntax, it can be used to tailor the analysis to his or her specific needs. (See

Appendix C for the syntax of this analysis). A good way to begin using syntax is

to use the paste command located in the dialog box.

Computing Univariate and Multivariate Repeated Measures ANOVAs

To run a univariate or multivariate repeated measures ANOVA, place the

scores for each treatment in its own column. Click Analyze, go to General Linear

Model, and under that menu click Repeated measures. In the Repeated Measures

Define Factor(s) dialog box enter 4 in the box labeled Number of Levels, click

Add, and then Define. In the Repeated measures dialog box, highlight the

variables representing each treatment level, click the arrow beside the Within-

Subjects Variable box and click OK. The output viewer will display summary

tables for the multivariate and univariate repeated measures ANOVAs. (See

Appendix D for the output and Appendix E for the syntax.)

Conclusion

Repeated measures designs have several advantages over between-

subjects designs, including greater statistical power with fewer participants.

Counterbalancing is suggested to minimize carryover effects. The repeated

measures ANOVA has greater power against Type H errors, because it explains

more of the variance than between-subjects ANOVAs.
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If the sphericity assumption is violated the Fcalc can become inaccurate.

For this reason, it is suggested that the degrees of freedom be adjusted by an

estimator of epsilon. The best estimator of epsilon depends on how much the

sphericity assumption is violated. In cases where sphericity is violated, one may

consider using a multivariate repeated measures ANOVA. An ANOVA is a

general form of linear regression.

Linear regression may be preferred over an ANOVA because it is not

limited to testing nominal or ordinal independent variables. Calculating test

statistics are easier with the use of statistical programs, such as SPSS; however, a

firm understanding of the statistics being used is still required.

27



Understanding Within 27

References

Barcikowski, R. S., & Robey, R. R. (1984). Decisions in single group repeated

measures analysis: Statistical tests and three computer packages. The

American Statistician, 38, 148-150.

Bartz, A. E. (1999). Basic statistical concepts (4th ed.). Upper Saddle River, NJ:

Prentice Hall.

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of

analysis of variance problems, II. Effects of inequality of variance and of

correlation between errors in the two-way classification. Annals of

Mathematical Statistics, 25, 484-498.

Cohen, B. H. (2001). Explaining psychological statistics (2nd ed.). New York:

John Wiley.

Edwards, A. L. (1985). Multiple regression and the analysis of variance and

covariance (2"d ed.). New York: W. H. Freeman.

Girden, E. R. (1992). ANOVA: Repeated measures. Newbury Park, CA: Sage.

Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile

data. Psychometrika, 24, 95-112.

Greenwald, A. G. (1976). Within-subjects designs: To use or not to use?.

Psychological Bulletin, 83, 314-320.

Haase, T., & Thompson, B. (1992, January). The homogeneity of variance

assumption in ANOVA: What it is and why it is required. Paper presented

28



Understanding Within 28

at the annual meeting of the Southwest Educational Research Association,

Houston, TX.

Heiman, G. W. (1999). Research methods in psychology (2nd ed.) Boston, MA:

Houghton Mifflin.

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (1998). Applied statistics for the

behavioral sciences (4th ed.). Boston, MA: Houghton Mifflin.

Huck, S. W. (2000). Reading statistics and research (3'd ed.). New York:

Longman.

Huynh, H., & Feldt, L. S. (1970). Conditions under which mean square ratios in

repeated measurements designs have exact F-distributions. Journal of the

American Statistical Association, 65, 1582-1589.

Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of

freedom from sample data in randomized block and split-plot designs.

Journal of Educational Statistics, 1, 69-82.

Keppel, G., & Saufley, W. H., Jr. (1980). Introduction to design and analysis: A

student's handbook. San Francisco, CA: W. H. Freeman.

Keppel, G., & Zedeck, S. (1989). Data analysis for research designs: Analysis of

variance and multiple regression/correlation approaches. New York: W.

H. Freeman.

29



Understanding Within 29

Keselman, H. J., & Algina, J. (1996). The analysis of higher-order repeated

measures designs. In B. Thompson (Ed.), Advances in social science

methodology (Vol. 4, pp. 45-70). Greenwich, CT: JAI Press.

Kogos, S. C., Jr. (2000). Repeated measures designs and the sphericity

assumption (TM 033 280). (ERIC Document Reproduction Service No.

ED457184)

Minke, A. (1997, January). Conducting repeated measures analyses:

Experimental design considerations (TM 026 436). Paper presented at the

annual meeting of the Southwest Educational Research Association,

Austin, TX. (ERIC Document Reproduction Service No. ED407415)

Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied

linear statistical models (4th ed.). Chicago, IL: Irwin.

O'Brien, R. G., & Kaiser, M. K. (1985). MANOVA method for analyzing

repeated measures designs: An extensive primer. Psychological Bulletin,

97, 316-333.

Stevens, J. (1996). Applied multivariate statistics for the social science (3rd ed.).

Mahwah, NJ: Erlbaum.

Tanguma, J. (1999). Analyzing repeated measures designs using univariate and

multivariate methods: A primer. In B. Thompson (Ed.), Advances in social

science methodology (Vol. 5, pp. 233-250). Stamford, CT: JAI Press.

30



Understanding Within 30

Wegner, D. M., Schneider, D. J., Carter, S. R., III, & White, T. L. (1987).

Paradoxical effects of thought suppression. Journal of Personality and

Social Psychology, 53, 5-13.

Wells, R. D. (1998, November). Conducting repeated measures analyses using

regression: The General Linear Model lives (TM 029 320). Paper

presented at the annual meeting of the Mid-South Educational Research

Association, New Orleans, LA. (ERIC Document Reproduction Service

No. ED426091)

Wilcox, R. R. (1997). Introduction to robust estimation and hypothesis testing.

San Diego, CA: Academic Press.

Winer, B. J. (1962). Statistical principles in experimental design. New York:

McGraw-Hill.



Understanding Within 31

Appendix A

Orthogonal Coding of the Sample Data from Table 2

Participant

Vectors

V1 V2 V3 Sum A'

1 -3 1 -1 10 1

2 -3 1 -1 16 2

3 -3 1 -1 21 3

4 -3 1 -1 24 5

1 -1 3 10 2

2 -1 -1 3 16 2

3 -1 -1 3 21 5

4 -1 -1 3 24 5

1 1 -1 -3 10 3

2 1 -1 -3 16 4

3 1 -1 -3 21 6

4 1 -1 -3 24 6

1 3 1 1 10 4

2 3 1 1 16 8

3 3 1 1 21 7

4 3 1 1 24 8
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Appendix B

Linear Regression ANOVA Output

Regression
Variables Entered /Removes

Model
Variables
Entered

Variables
Removed Method

1 SUM, y3,
V2, V1

Enter

a- All requested variables entered.

b. Dependent Variable: Y

Model Summary

Model R R Square
Adjusted
R Square

Std. Error of
the Estimate

1 .950a .902 .866 .80128

a. Predictors: (Constant), SUM, V3, V2, V1

ANOVAb

Model
Sum of
Squares df Mean Square F Sig.

1 Regression

Residual

Total

64.875

7.062

71.938

4

11

15

16.219

.642

25.261 000a

a. Predictors: (Constant), SUM, V3, V2, V1

b. Dependent Variable: Y

Coefficients')

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.B Std. Error Beta

1 (Constant) .000 .699 .000 1.000

V1 .663 .090 .699 7.395 .000

V2 .313 .200 .147 1.560 .147

V3 1.250E-02 .090 .013 .140 .892

SUM .250 .038 .626 6.626 .000

a. Dependent Variable: Y
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Appendix C

Linear Regression ANOVA Syntax

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT y
/METHOD=ENTER vl v2 v3 sum.
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Appendix D

Multivariate and Univariate Repeated Measures ANOVA Output

General Linear Model
Within-Subjects Factors

Measure: MEASURE _1

FACTORI
Dependent
Variable

1 LEVEL1

2 LEVEL2

3 LEVEL3
4 LEVEL4

Multivariate Tests)

Effect Value F Hypothesis df Error df Sig.

FACTOR1 Pillai's Trace .950 6.333a 3.000 1.000 .282

Wilks' Lambda .050 6.333a 3.000 1.000 .282

Hotel ling's Trace 19.000 6.333a 3.000 1.000 .282

Roy's Largest Root 19.000 6.333° 3.000 1.000 .282

a. Exact statistic

b.

Design: Intercept
Within Subjects Design: FACTORI

Mauchly's Test of Sphericity

Measure: MEASURE 1

Within Subjects EffeiMauchty's W
Approx.

Chi-Square df Sig.

Epsilona

Greenhous
e-Geisser Huynh-Feldt Lower-bound

FACTORI .005 9.199 5 .151 .467 .750 .333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displal
Tests of Within-Subjects Effects table.

b.

Design: Intercept
Within Subjects Design: FACTOR1
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Tests of Within-Subjects Effects

MEASURE 1

Source
Type III Sum
of Squares df Mean Square F Sig.

FACTOR1 Sphericity Assumed 36.688 3 12.229 15.584 .001

"Greenhouse-Geisser 36.688 1.400 26.206 15.584 .013

Huynh-Feldt 36.688 2.250 16.307 15.584 .003

Lower-bound 36.688 1.000 36.688 15.584 .029

Error(FACTOR1) Sphericity Assumed 7.063 9 .785

Greenhouse-Geisser 7.063 4.200 1.682

Huynh-Feldt 7.063 6.749 1.046

Lower-bound 7.063 3.000 2.354

Tests of Within-Subjects Contrasts

Measure: MEASURE 1

Source FACTOR1
Type HI Sum
of Squares df Mean Square F Sig.

FACTOR1 Linear 35.113 1 35.113 31.562 .011

Quadratic 1.563 1 1.563 1.271 .342

Cubic 1.250E-02 1 1.250E-02 1.000 .391

Error(FACTOR1) Linear 3.337 3 1.112

Quadratic 3.688 3 1.229

Cubic 3.750E-02 3 1.250E-02

Tests of Between-Subjects Effects

Measure: MEASURE _1

Transformed Variable: Average

Type III Sum
.

Source of Squares df Mean Square F Sig.
Intercept 315.063 1 315.063 33.532 .010

Error 28.188 3 9.396
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Repeated Multivariate and Univariate ANOVA Syntax

GLM
levell level2 level3 level4
/WSFACTOR = factorl 4 Polynomial
/METHOD = SSTYPE(3)
/CRITERIA = ALPHA(.05)
/WSDESIGN = factorl .

37



ti
DepartmentofEducation

Office of Educational Research and Improvement (OERI)
National Library of Education (NLE)

Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific DoCument)

I. DOCUMENT IDENTIFICATION:

TM034806

Title:UNDERSTANDING "WITHIN" VERSUS "BETWEEN" ANOVA DESIGNS: BENEFITS AND
REQUIREMENTS OF REPEATED MEASURES

Author(s): GORDON D. LAMB

Corporate Source: Publication Date:

2/14/03

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the
monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy,
and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if
reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom
of the page.

The sample sticker shown below will be
affixed to all Level 1 documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Levell

Check here for Level 1 release, permitting reproduction
and dissemination in microfiche or other ERIC archival

media (e.g., electronic) and paper copy.

Sign
here,-)
please

The sample sticker shown below will be
affixed to all Level 2A documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE, AND IN ELECTRONIC MEDIA
FOR ERIC COLLECTION SUBSCRIBERS ONLY,

HAS BEEN GRANTED BY

2A

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2A

Check here for Level 2A release, permitting reproduction
and dissemination In microfiche and In electronic media

for ERIC archival collection subscribers only

The sample sticker shown below will be
affixed to all Level 2B documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE ONLY HAS BEEN GRANTED BY

2B

sad

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2B

Check here for Level 2B release, permitting
reproduction and dissemination in microfiche only

Documents will be processed as Indicated provided reproduction quality permits.
If permission to reproduce is granted, but no box Is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document
as indicated above. Reproduction from the ERIC microfiche or electronic media by persons other than ERIC employees and its system
contractors requires permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies
to satisfy information needs of educators in response to discrete inquiries.

Signatur

0"/Ve
Organization/Address:

TAMU DEPT EDUC PSYC
COLLEGE STATION, TX 77843-4225

Printed Name/Position/Title:

GORDON D. LAMB

14E1157845-1831
FAX:

E-Mail Address:
Date3/4/03

(over)



III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please
provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly
available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more
stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and
address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:
University of Maryland

ERIC Clearinghouse on Assessment and Evaluation
1129 Shriver Laboratory
College Park, MD 20742

Attn: Acquisitions

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the doctiment being
contributed) to:

ERIC Processing and Reference Facility
1100 West Street, 2nd Floor

Laurel, Maryland 20707-3598

Telephone: 301-497-4080
Toll Free: 800-799-3742

FAX: 301-953-0263
e-mail: ericfac@ineted.gov

WWW: hftp://ericfac.piccard.csc.com

EFF-088 (Rev. 9/97)
PREVIOUS VERSIONS OF THIS FORM ARE OBSOLETE.


